精英家教网 > 初中数学 > 题目详情
(2007•肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.

【答案】分析:要证明BF=CE,只要证明AF=BE即可,可通过证明△AFD≌△BEA得到.
解答:证明:在正方形ABCD中,∠DAF=∠ABE=90°,DA=AB=BC,
∵DG⊥AE,
∴∠FDA+∠DAG=90°.
又∵∠EAB+∠DAG=90°,
∴∠FDA=∠EAB.
在Rt△DAF与Rt△ABE中,DA=AB,∠FDA=∠EAB,
∴Rt△DAF≌Rt△ABE.
∴AF=BE.
∵AB=BC,
∴BF=CE.
点评:此题考查简单的线段相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,同角的余角相等.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2007•肇庆)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2007•肇庆)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2007•肇庆)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年广东省肇庆市中考数学试卷(解析版) 题型:选择题

(2007•肇庆)如图,数轴上A,B,C三点表示的数分别为a,b,c,则它们的大小关系是( )

A.a>b>c
B.b>c>a
C.c>a>b
D.b>a>c

查看答案和解析>>

科目:初中数学 来源:2002年广东省佛山市中考数学试卷(解析版) 题型:解答题

(2007•肇庆)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

查看答案和解析>>

同步练习册答案