精英家教网 > 初中数学 > 题目详情
17.从背面相同的同一副扑克牌中取出红桃9张,黑桃10张,方块11张,现将这些牌洗匀背面朝上放桌面上.
(1)求从中抽出一张是红桃的概率;
(2)现从桌面上先抽掉若干张黑桃,再放入与抽掉的黑桃张数相同的红桃,并洗匀且背面都朝上排开后,随机抽一张是红桃的概率不小于$\frac{2}{5}$,问至少抽掉了多少张黑桃?
(3)若先从桌面上抽掉9张红桃和m(m>6)张黑桃后,再在桌面上抽出一张牌,当m为何值时,事件“再抽出的这张牌是方块”为必然事件?当m为何值时,事件“再抽出的这张牌是方块”为随机事件?并求出这个事件的概率的最小值.

分析 (1)根据题意列式计算即可;
(2)设至少抽掉了x张黑桃,放入x张的红桃,根据题意列不等式即可得到结论;
(3)根据题意即可得到结论.

解答 解:(1)抽出一张是红桃的概率是$\frac{9}{9+10+11}$=$\frac{3}{10}$;
(2)设至少抽掉了x张黑桃,放入x张的红桃,
根据题意得,$\frac{9+x}{9+10+11}$≥$\frac{2}{5}$,
解得:x≥3,
答:至少抽掉了3张黑桃;
(3)当m为10时,事件“再抽出的这张牌是方块”为必然事件,
当m为9,8,7时,事件“再抽出的这张牌是方块”为随机事件事件,
P(最小)=$\frac{11}{(10-7)+11}$=$\frac{11}{14}$.

点评 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.同时考查了必然事件、不可能事件与随机事件的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.已知m为实数,且sinα、cosα是关于x的方程3x2-mx+1=0的两根,则sin4α+cos4α的值为(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{7}{9}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:(1-$\frac{1}{a-1}$)÷$\frac{{a}^{2}-4a+4}{{a}^{2}-a}$.其中a为自己喜欢的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,AB=AD,CB=CD.请你添加一条线把它分成两个全等三角形,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,△ABC中,CD、BE是边AB和AC上的高,点M在BE的延长线上,且BM=AC,点N在CD上,且AB=CN,则∠MAN的度数是90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某网店店主购进A,B两种型号的装饰链,其中A型装饰链的进货单价比B型装饰链的进货单价多20元,花500元购进A型装饰链的数量与花400元购进B型装饰链的数量相等.销售中发现A型装饰链的每月销量y1(个)与销售单价x(元)之间满足的函数关系式为y1=-x+200;B型装饰链的每月销售y2(个)与销售单价x(元)之间的关系满足一次函数关系y2=-x+140.
(1)求A,B两种型号装饰链的进货单价.
(2)直接写出B型装饰链的每月销量y2(个)与销售单价x(元)之间的函数关系式为y2=-x+140.
(3)已知每个A型装饰链的销售单价比B型装饰链的销售单价高20元.求A,B两种型号装饰链的销售单价各为多少元时,每月销售这两种装饰链的总利润最大,最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:|-3|+$\sqrt{3}$tan30°-$\sqrt{12}$-(2016-π)0
(2)先化简,再求值:$\frac{2a+1}{{a}^{2}-1}$•$\frac{{a}^{2}-2a+1}{{a}^{2}-a}$-$\frac{1}{a+1}$,其中a=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若分式$\frac{x+3}{x-3}$的值为零,则x的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:2-1+|-2|-(3-π)0+$\sqrt{9}$.

查看答案和解析>>

同步练习册答案