精英家教网 > 初中数学 > 题目详情
如图,已知中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.
证明见解析.

试题分析:根据平行四边形性质得出AB=DC,AB∥CD,推出∠C=∠FBE,∠CDF=∠E,证△CDF≌△BEF,推出BE=DC即可.
∵F是BC边的中点,
∴BF=CF,
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
∴∠C=∠FBE,∠CDF=∠E,
∵在△CDF和△BEF中

∴△CDF≌△BEF(AAS),
∴BE=DC,
∵AB=DC,
∴AB=BE.
考点: 1.平行四边形的性质;2.全等三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=SEBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、()、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.  
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=    ;各内角中最小内角是    度,最大内角是      度;用它们拼成的一个五边形如图②,其面积是     ,
(2)请用这副七巧板,既不留下一丝空白,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中,上下、左右相邻两点距离都为1).
注:不能拼成与图①或②全等的多边形!
        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,AB⊥BC,∠A=∠C=100°,则∠D的度数是 (   )
A.60°B.70°C.90°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到BC边时,小球P所经过的路程为       ;当小球P第一次碰到AD边时,小球P所经过的路程为       ;当小球P第n(n为正整数)次碰到点F时,小球P所经过的路程为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形具有而菱形不一定具有的性质是  (  )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果一个多边形的内角和是14400,那么这个多边形的边数是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为     

查看答案和解析>>

同步练习册答案