分析 (1)首先利用等边三角形的性质和全等三角形的判定证得△ABD≌△BCE(SAS),利用全等三角形的性质得∠EAM=∠EBA,由相似三角形的(AA)判定定理得结论;
(2)利用(1)中结论可得∠BAD=∠MBD,又∠BDA=∠MDB,由相似三角形的判定定理得△BDA∽△MDB,利用相似三角形的性质可得结论.
解答 证明:(1)∵△ABC是等边三角形,
∴∠BAC=∠ABC=∠ACB=60°,AB=AC=BC,
在△ABD与△BCE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABC=∠BCE=60°}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠EAM=∠CAB-∠BAD=60°-∠BAD,∠EBA=∠ABC-∠CBE=60°-∠CBE,
∴∠EAM=∠EBA,
∵∠AEM=∠BEA,
∴△AME∽△BAE;
(2)∵∠BAD=∠CBE,即∠BAD=∠MBD,∠BDA=∠MDB,
∴△BDA∽△MDB,
∴$\frac{BD}{MD}=\frac{DA}{DB}$,
∴BD2=DA•DM.
点评 本题主要考查了全等三角形与相似三角形的判定及性质定理,利用等边三角形的性质得到判断全等三角形的条件是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-1,-1) | B. | (2,5) | C. | (1,6) | D. | (-2,5) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com