精英家教网 > 初中数学 > 题目详情
已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上.

(1)求抛物线的函数关系式;
(2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由;
(3)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.
(1)该抛物线的函数关系式为y=﹣x2﹣2x;
(2)相切,理由见解析;
(3)存在这样的点M ,M的坐标为(﹣6+,﹣1+2)或(﹣6﹣,﹣1﹣2).

试题分析:(1)根据过A、C两点的直线的解析式即可求出A,C的坐标,根据A,O的坐标即可得出抛物线的对称轴的解析式,然后将A点坐标代入抛物线中,联立上述两式即可求出抛物线的解析式.
(2)直线与圆的位置关系无非是相切与否,可连接AD,证AD是否与AC垂直即可.由于B,D关于x轴对称,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC与圆D相切.
(3)根据圆周角定理可得出∠AEO=45°,那么∠MOA=30°,即M点的纵坐标的绝对值和横坐标的绝对值的比为tan30°,由此可得出x,y的比例关系式,然后联立抛物线的解析式即可求出M点的坐标.(要注意的是本题要分点M在x轴上方还是下方两种情况进行求解).
试题解析:(1)根据题意知:A(﹣6,0),C(0,6)
∵抛物线y=ax2+bx(a<0)经过A(﹣6,0),0(0,0).
∴对称轴x==﹣3,b=6a…①
当x=﹣3时,代入y=x+6得y=﹣3+6=3,
∴B点坐标为(﹣3,3).
∵点B在抛物线y=ax2+bx上,
∴3=9a﹣3b…②
结合①②解得a=﹣,b=﹣2,
∴该抛物线的函数关系式为y=﹣x2﹣2x;
(2)相切
理由:连接AD,
∵AO=OC
∴∠ACO=∠CAO=45°
∵⊙B与⊙D关于x轴对称
∴∠BAO=∠DAO=45°
∴∠BAD=90°
又∵AD是⊙D的半径,
∴AC与⊙D相切.
∵抛物线的函数关系式为y=﹣x2﹣2x,
∴函数顶点坐标为(﹣3,3),
由于D、B关于x轴对称,
则BD=3×2=6;
(3)存在这样的点M.
设M点的坐标为(x,y)
∵∠AEO=∠ACO=45°
而∠MOA:∠AEO=2:3
∴∠MOA=30°
当点M在x轴上方时,=tan30°=
∴y=﹣x.
∵点M在抛物线y=﹣x2﹣2x上,
∴﹣x=﹣x2﹣2x,
解得x=﹣6+,x=0(不合题意,舍去)
∴M(﹣6+,﹣1+2).
当点M在x轴下方时,=tan30°=
∴y=x,
∵点M在抛物线y=﹣x2﹣2x上.
x=﹣x2﹣2x,
解得x=﹣6﹣,x=0(不合题意,舍去).
∴M(﹣6﹣,﹣1﹣2),
∴M的坐标为(﹣6+,﹣1+2)或(﹣6﹣,﹣1﹣2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:

(1)设△POQ的面积为,求关于的函数解析式。
(2)当△POQ的面积最大时,△  POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若抛物线的图象最高点的纵坐标为0,则m的值为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .

(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为               ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围                  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的顶点坐标是(   )
A.(1,-2)B.(1,2)
C.(0,-2)D.(0,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数y=ax2+bx+c(a≠0)的图象,则下列说法中正确的是()
A.A>0B.4a+b>0C.c="0"D.A+b+c>0

查看答案和解析>>

同步练习册答案