精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:

(1)设△POQ的面积为,求关于的函数解析式。
(2)当△POQ的面积最大时,△  POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。
(1)y=-t2+3t(0≤t≤6);  (2) 点C不落在直线AB上.

试题分析:(1)根据P、Q的速度,用时间t表示出OQ和OP的长,即可通过三角形的面积公式得出y,t的函数关系式;
(2)先根据(1)的函数式求出y最大时,x的值,即可得出OQ和OP的长,然后求出C点的坐标和直线AB的解析式,将C点坐标代入直线AB的解析式中即可判断出C是否在AB上;
试题解析:(1)∵OA=12,OB=6由题意,得BQ=1·t=t,OP=1·t=t
∴OQ=6-t
∴y=×OP×OQ=·t(6-t)=-t2+3t(0≤t≤6)
(2)∵
∴当有最大值时,
∴OQ=3  OP=3即△POQ是等腰直角三角形。
把△POQ沿翻折后,可得四边形是正方形
∴点C的坐标是(3,3)

∴直线的解析式为时,
∴点C不落在直线AB上
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某职业学校三名学生到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
A:如果以10元/千克的价格销售,那么每天可售出300千克.
B:如果以13元/千克的价格销售,那么每天可获取利润750元.
C:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】
(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上.

(1)求抛物线的函数关系式;
(2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由;
(3)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一个二次函数的顶点A的坐标为(1,0),且图像经过点B(2,3).
(1)求这个二次函数的解析式.
(2)设图像与y轴的交点为C,记,试用表示(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,有一个抛物线形拱桥,其桥拱的最大高度为16米,跨度为40米,现把它的示意图放在平面直角坐标系中,则此抛物线的函数关系式为___________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,则m的值为(  )
A.1或-3B.5或-3C.-5或3D.以上都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于抛物线的关系说法中,正确的是( )
A.它们的形状相同,开口也相同;
B.它们都关于轴对称;
C.它们的顶点不相同;
D.点()既在抛物线上也在

查看答案和解析>>

同步练习册答案