精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
(1);(2) (3) P点的坐标为,四边形ABPC的面积的最大值为.

试题分析:(1)把B、C两点的坐标代入二次函数y=x2+bx+c即可求出bc的值,故可得出二次函数的解析式;
(2)过点P作y轴的平行线与BC交于点Q,与OB交于点E,设P(x,x2-2x-3),易得,直线BC的解析式为y=x-3则Q点的坐标为(x,x-3),再根据S四边形ABPC=S△ABC+S△BPQ+S△CPQ即可得出结论.
试题解析:⑴将B、C两点坐标代入得
解得:. 所以二次函数的表示式为: 
⑵存在点P,使四边形POP′C为菱形,设P点坐标为,PP′交CO于E,
若四边形POP′C是菱形,则有PC=PO,连结PP′,则PE⊥OC于E,
∴OE=EC=


解得(不合题意,舍去)
∴P点的坐标为
⑶过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P,易得,直线BC的解析式为,则Q点的坐标为






时,四边形ABPC的面积最大
此时P点的坐标为,四边形ABPC的面积的最大值为.
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

二次函数的图像一定不经过(    )
A.第一象限;B.第二象限;C.第三象限;D.第四象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:

(1)设△POQ的面积为,求关于的函数解析式。
(2)当△POQ的面积最大时,△  POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2) .你写出的函数表达式是                    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若抛物线的图象最高点的纵坐标为0,则m的值为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中是抛物线形拱桥,当水面宽AB=8米时,拱顶到水面的距离CD=4米.如果水面上升1米,那么水面宽度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点是抛物线上的一点,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数y=ax2+bx+c(a≠0)的图象,则下列说法中正确的是()
A.A>0B.4a+b>0C.c="0"D.A+b+c>0

查看答案和解析>>

同步练习册答案