精英家教网 > 初中数学 > 题目详情
20.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是(  )
A.55°B.60°C.65°D.70°

分析 连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.

解答 解:连接OB,
∵∠ACB=25°,
∴∠AOB=2×25°=50°,
由OA=OB,
∴∠BAO=∠ABO,
∴∠BAO=$\frac{1}{2}$(180°-50°)=65°.
故选C.

点评 本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:

(1)此次调查的学生人数为200;
(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;
(3)在图(2)中补画条形统计图中不完整的部分;
(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,反比例函数y=$\frac{k}{x}$的图象经过点A(-1,4),直线y=-x+b(b≠0)与双曲线y=$\frac{k}{x}$在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.
(1)求k的值;
(2)当b=-2时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.
(1)分别表示出y1与x,y2与x的函数关系式.
(2)月通话时间为多长时,A、B两种套餐收费一样?
(3)什么情况下A套餐更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示,则该几何体的形状可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=$\frac{k}{x}$(k≠0)的图象经过圆心P,则k=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:
①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-$\frac{5}{2}$,y1)、C(-$\frac{1}{2}$,y2)为函数图象上的两点,则y1<y2
其中正确结论是(  )
A.②④B.①④C.①③D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)

(1)将统计图补充完整;
(2)求出该班学生人数;
(3)若该校共用学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?

查看答案和解析>>

同步练习册答案