精英家教网 > 初中数学 > 题目详情
10.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?

分析 (1)由作图知:PQ为线段AC的垂直平分线,从而得到AE=CE,AD=CD,然后根据CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA证得两三角形全等即可;
(2)根据全等得到AE=CF,然后根据EF为线段AC的垂直平分线,得到EC=EA,FC=FA,从而得到EC=EA=FC=FA,利用四边相等的四边形是菱形判定四边形AECF为菱形.

解答 解:(1)由作图知:PQ为线段AC的垂直平分线,
∴AE=CE,AD=CD,
∵CF∥AB,
∴∠EAC=∠FCA,∠CFD=∠AED,
在△AED与△CFD中,
$\left\{\begin{array}{l}{∠EAC=∠FCA}\\{AD=CD}\\{∠CFD=∠AED}\end{array}\right.$,
∴△AED≌△CFD;
(2)∵△AED≌△CFD,
∴AE=CF,
∵EF为线段AC的垂直平分线,
∴EC=EA,FC=FA,
∴EC=EA=FC=FA,
∴四边形AECF为菱形.
(3)∵AD=3,AE=5,
∴根据勾股定理得:ED=4,
∴EF=8,AC=6,
∴S菱形AECF=8×6÷2=24,
∴菱形AECF的面积是24

点评 本题考查了菱形的判定、全等的判定与性质及基本作图,解题的关键是了解通过作图能得到直线的垂直平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是(  )
A.55°B.60°C.65°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为(  )
A.A→O→BB.B→A→CC.B→O→CD.C→B→O

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.我们定义:a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如:2的差倒数$\frac{1}{1-2}$=1,现在有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3…且${a}_{1}=-\frac{1}{3}$,
(1)分别求出a2,a3,a4的值,
(2)计算a1+a2+a3+…+a36的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.选作题(请从以下两个小题中任选一题作答,若多选,则按所选的第一题计分.)
A.如图,将△ABC绕顶点A按逆时针旋转α(0°<α<180°)角度得到△AB′C′,且使AC⊥BB′.若∠CAB=35°,则旋转角α的大小为70°.
B.用科学计算器计算:1583tan12°≈838560.7( 结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【问题情境】
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
【探究展示】
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
【拓展延伸】
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.通常情况下,若y是关于x的函数,则y与x的函数关系式可记作y=f(x).如y=$\frac{1}{2}$x+3记作f(x)=$\frac{1}{2}$x+3,当x=2时,f(2)=$\frac{1}{2}$×2+3=4.下列四个函数中,满足f(a+b)=f(a)+f(b)的函数是(  )
A.y=$\frac{\sqrt{3}}{x}$B.y=-2x-6C.y=3xD.y=$\frac{1}{2}{x}^{2}+3x+4$

查看答案和解析>>

同步练习册答案