【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).
(1)求一次函数y=kx+b的解析式;
(2)求△BOC的面积;
(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为 .
【答案】(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).
【解析】
(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;
(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;
(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.
(1)∵点C(m,4)在正比例函数y=x的图象上,
∴m=4,
解得:m=3,
∴C(3,4),
∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,
∴,
解得,
∴一次函数的解析式为y=x+2;
(2)在y=x+2中,令x=0,解得y=2,
∴B(0,2),
∴S△BOC=×2×3=3;
(3)分AB为直角边和AB为斜边两种情况,
当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,
如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,
∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,
∴AB=BD1,
∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠EBD1,
∵在△BED1和△AOB中,
,
∴△BED1≌△AOB(AAS),
∴BE=AO=3,D1E=BO=2,
∴OE=OB+BE=2+3=5,
∴点D1的坐标为(﹣2,5);
同理可得出:△AFD2≌△AOB,
∴FA=BO=2,D2F=AO=3,
∴点D2的坐标为(﹣5,3),
当AB为斜边时,如图,
∵∠D1AB=∠D2BA=45°,
∴∠AD3B=90°,
设AD1的解析式为y=k1x+b1,
将A(-3,0)、D1(-2,5)代入得,
解得:,
所以AD1的解析式为:y=5x+15,
设BD2的解析式为y=k2x+b2,
将B(0,2)、D2(-5,3)代入得,
解得:,
所以AD2的解析式为:y=x+2,
解方程组得:,
∴D3(,),
综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).
故答案为:(﹣2,5)或(﹣5,3)或(,).
科目:初中数学 来源: 题型:
【题目】已知,为直线上一点,为直线外一点,连结.
(1)用直尺、圆规在直线上作点,使为等腰三角形(作出所有符合条件的点,保留痕迹).
(2)设,若(1)中符合条件的点只有两点,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.
(1)证明:△BCE≌△CAD;
(2)若AD=15cm,BE=8cm,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(十九),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型超市投入15000元资金购进、两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:
类别/单价 | 成本价(元/箱) | 销售价(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)该大型超市购进、品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交、于两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com