精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,∠A=10°,则∠ABC=
 
考点:圆周角定理
专题:
分析:先根据圆周角定理求出∠ACB的度数,再由直角三角形的性质即可得出结论.
解答:解:∵AB是⊙O的直径,
∴∠ACB=90°.
∵∠A=10°,
∴∠ABC=90°-10°=80°.
故答案为:80°.
点评:本题考查的是圆周角定理,熟知在直径所对的圆周角是直角是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

个人发表文章、出版图书所得稿费的纳税计算方法是:
(1)稿费不高于800元的不纳税;
(2)稿费高于800元而不高于4000元,缴纳超过800元部分稿费的14%;
(3)稿费超过4000元的,缴纳全部稿费的11%.
张老师得到一笔稿费,缴纳个人所得税530元,问:张老师的这笔稿费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:
(1)作出△ABC的外接圆;
(2)△ABC外心的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△OAB的顶点A(3,0),B(0,1),O是坐标原点.将△OAB绕点O按逆时针旋转90°得到△ODC.
(1)写出C,D两点的坐标;
(2)求过C,D,A三点的抛物线的解析式,并求此抛物线的顶点M的坐标;
(3)在线段AB上是否存在点N使得NA=NM?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

物理学定律告诉我们:光线经平面镜反射,光线与平面镜所成的角等于反射线与平面镜所成的角.现在有一束光线与水平面成60°的角照射地面,为使这束光线经过平面镜反射后成水平光线,如图所示在地面AB上放置一个平面镜CD,则平面镜CD与地面AB所成的∠DCB应为(  )
A、15°B、30°
C、45°D、60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.
(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求
OA
OB
的值;
(2)在(1)的条件下,若C、D运动
5
2
秒后都停止运动,此时恰有OD-AC=
1
2
BD,求CD的长;
(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AB=AC,BD平分∠ABC,CD平分∠ACB.

(1)问:①图中有几个等腰三角形?
②如图2,若过D作EF∥BC交AB于E,交AC于F,图中又增加了几个等腰三角形?
(2)如图3,若将题中的△ABC改为不等边三角形,其他条件不变,情况会如何?还可得出哪些线段的和差关系?(直接写出结论,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

同一条弦所对的两条弧是等弧.
 
.(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:

若等腰三角形顶角为45°,腰长为2,则等腰三角形面积是
 

查看答案和解析>>

同步练习册答案