精英家教网 > 初中数学 > 题目详情

从等边三角形、直角三角形、正方形、等腰梯形、平行四边形、圆中任取一个图形,是中心对称图形的概率为________.


分析:在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,这6个图形出现的机会相同,6个图形中是中心对称图形的有正方形,矩形、正六边形三个.
解答:∵在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,这6个图形出现的机会相同,6个图形中是中心对称图形的有正方形,矩形、正六边形三个.
∴任取其中一个图形,恰好既是中心对称图形的概率为 =
故答案为
点评:本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=8,DC=4,∠ABC=90°,∠A=60°.M点、N点是梯形边上的动点,M、N之间的线段长或折线长始终为2,它们同时开始运动,同时停止运动.N点从A点开始先沿AD方向,再沿DC方向,到达C点时停止运动.过M点作MH⊥AB,垂足为H,与BN交于O点,连接HN.设A、N之间的线段长或折线长为x(x>0).解答下列问题:
(1)当△AHN为等边三角形时,求x的值;
(2)当MN为线段时,并且△OHB与以O、M、N三点组成的三角形相似,求x的值或x的取值范围;
(3)设△AHN的面积为S,求S关于x的函数解析式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动.设运动时间为t(s),解答下列问题:
(1)当t为何值时,△BPQ为直角三解形;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐田区二模)三张卡片上分别画有等腰直角三角形、等边三角形和菱形,从这三张卡片中随机抽取一张,则取到的卡片上的图形是中心对称图形的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:
(1)求△ABC的面积;
(2)当t为何值时,△PBQ是直角三角形?
(3)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.

查看答案和解析>>

同步练习册答案