精英家教网 > 初中数学 > 题目详情
如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.那么s与t之间的函数关系式是s=______.
时间t/s1234
距离s/m281832


∵1秒时,距离为2;
2秒时,距离为2×4=2×22
3秒时,距离为2×9=2×32
4秒时,距离为2×16=2×42
∴t秒时,距离为2×t2s=2t2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线y=-
5
4
x2+bx+c经过点A(0,1)、B(3,
5
2
)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)求此抛物线的函数表达式;
(2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值;
(3)连结PC,当t为何值时,四边形PMBC是菱形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线y=-
1
2
x与抛物线y=-
1
4
x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线y=ax2-2ax+b经过梯形OABC的四个顶点,若BC=10,梯形OABC的面积为18.
(1)求抛物线解析式;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,平移后的两条直线分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)如图3,设图1中点D坐标为(1,3),M为抛物线的顶点,动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以边长为
2
的正方形ABCD的对角线所在直线建立平面直角坐标系,抛物线y=x2+bx+c经过点B且与直线AB只有一个公共点.
(1)求直线AB的解析式;
(2)求抛物线y=x2+bx+c的解析式;
(3)若点P为(2)中抛物线上一点,过点P作PM⊥x轴于点M,问是否存在这样的点P,使△PMC△ADC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的顶点C的横坐标为1,一次函数y=kx+2的图象与二次函数的图象交于A、B两点,且A点在y轴上,以C为圆心,CA为半径的⊙C与x轴相切,
(1)求二次函数的解析式;
(2)若B点的横坐标为3,过抛物线顶点且平行于x轴的直线为l,判断以AB为直径的圆与直线l的位置关系;
(3)在满足(2)的条件下,把二次函数的图象向右平移7个单位,向下平移t个单位(t>2)的图象与x轴交于E、F两点,当t为何值时,过B、E、F三点的圆的面积最小?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标;
(3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1)求抛物线的解析式;
(2)以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3)设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(b、c为常数).
(1)若二次函数的图象经过A(-2,-3)和B(2,5)两点,求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标及对称轴.

查看答案和解析>>

同步练习册答案