精英家教网 > 初中数学 > 题目详情
如图,以边长为
2
的正方形ABCD的对角线所在直线建立平面直角坐标系,抛物线y=x2+bx+c经过点B且与直线AB只有一个公共点.
(1)求直线AB的解析式;
(2)求抛物线y=x2+bx+c的解析式;
(3)若点P为(2)中抛物线上一点,过点P作PM⊥x轴于点M,问是否存在这样的点P,使△PMC△ADC?若存在,求出点P的坐标;若不存在,请说明理由.
(1)设直线AB的解析式为:y=kx+b,
由已知可得A(-1,0),B(0,-1)则
-k+b=0
b=-1

k=-1
b=-1

∴直线AB的解析式为:y=-x-1

(2)把B(0,-1)代入抛物线y=x2+bx+c中得c=-1,联立
y=-x-1
y=x2+bx-1

得x2+(b+1)x=0,
当△=0时,解得b=-1,
∴抛物线解析式为:y=x2-x-1

(3)存在这样的点P,使△PMC△ADC,
∵△ADC为等腰直角三角形,则△PMC为等腰直角三角形,
即CM=PM=m,
又OC=1,根据图象P点坐标可设为(1+m,m),(1-m,m),(1-m,-m),
代入抛物线解析式y=x2-x-1中,
解方程:(1+m)2-(1+m)-1=m,
(1-m)2-(1-m)-1=m,
(1-m)2-(1-m)-1=-m;
解得m=-1,1,1±
2

∴P点的坐标为(0,-1),(2,1),(
2
,1-
2
),(-
2
,1+
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,二次函数的顶点为C(4,-3),且在x轴上截得的线段AB=6,则二次函数的表达式为______;若抛物线与y轴交于点D,则四边形DACB的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数y=a(x-1)2+4的图象如图所示,抛物线交y轴于点C,交x轴于A、B两点,用A点坐标为(-1,0).
(1)求a的值及点B的坐标.
(2)连接AC、BC,E是线段OC上的动点(不与O、C两点重合),过E点作直线PE⊥y轴交线段AC于点P,交线段BC于点Q.求证:
CE
CO
=
PQ
AB

(3)设E点的坐标为(0,n),在线段AB上是否存在一点R,使得以P、Q、R为顶点的三角形与△BOC相似?若存在,求出n的值,并画出相应的示意图;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(h,-3),且抛物线的对称轴是直线x=1.
(1)求b的值;
(2)点E是y轴少一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ=
3
r
AB时,求点E的坐标;
(3)若点M在射线CA少运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是(  )
A.6sB.4sC.3sD.2s

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.那么s与t之间的函数关系式是s=______.
时间t/s1234
距离s/m281832

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在半径为r的半圆⊙O中,半径OA⊥直径BC,点E、F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求证:S四边形AEOF=
1
2
r2
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式及自变量x的范围;
(3)当S△OEF=
5
18
S△ABC时,求点E、F分别在AB、AC上的位置及EF的长.

查看答案和解析>>

同步练习册答案