精英家教网 > 初中数学 > 题目详情
8.在△ABC中,∠A=90°,AB=AC,D为BC边上一点,求证:BD2+CD2=2AD2

分析 作AE⊥BC于E,由于∠BAC=90°,AB=AC,所以BE=CE,要证明BD2+CD2=2AD2,只需找出BD、CD、AD三者之间的关系即可,由勾股定理可得出AD2=AE2+ED2,AE2=AB2-BE2=AC2-CE2,ED=BD-BE=CE-CD,代入求出三者之间的关系即可得证.

解答 证明:作AE⊥BC于E,如图所示:
由题意得:ED=BE-BD=CD-CE,
∵在△ABC中,∠BAC=90°,AB=AC,
∴BE=CE=$\frac{1}{2}$BC,
由勾股定理可得:
AB2+AC2=BC2,AE2=AB2-BE2=AC2-CE2,AD2=AE2+ED2
∴2AD2=2AE2+2ED2=AB2-BE2+(BE-BD)2+AC2-CE2+(CE-CD)2
=AB2+AC2+BD2+CD2-2BD×BE-2CD×CE
=AB2+AC2+BD2+CD2-2×$\frac{1}{2}$BC×BC
=BD2+CD2
即:BD2+CD2=2AD2

点评 本题主要考查勾股定理,关键在于找出直角三角形利用勾股定理求证,本题主要运用“等量代换”求出BD、CD、AD三者之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.在△ABC中,∠C=90°,∠A=15°,将△ABC沿MH翻折,使顶点A与顶点B重合,已知AH=6,则BC等于3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知△ABC,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,如果∠DAC=∠DBA,那么$\frac{BD}{AB}$的值是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.直角三角形的外接圆和内切圆半径分别是5和2,则该直角三角形中较小的锐角的正弦值是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直线y=2x-a(a<0)与y轴交于点A,与x轴交于点E,抛物线y=x2-2x+a的顶点为C,与y轴交于点B,直线BC与直线AE交于点D.

(1)求点B、C、D的坐标(用含a的代数式表示);
(2)抛物线上是否存在一点P,使得以P、A、B、D为顶点的四边形是平行四边形?若存在,求出a的值及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,抛物线y=-x2+bx+c与x轴交于点M,N,与y轴交于点A(0,1),且经过点B(1,1),过点B作BC⊥x轴,交x轴于点C.
(1)求该抛物线的解析式.
(2)点E是线段OC上的一点(不与点O,C重合),AE⊥EF,且EF与∠BCN的平分线交于点F,当点E滑动到某处时,点F恰好落在抛物线上,求此时点E的坐标.
(3)在(2)的条件下y轴上是否存在点D,使得四边形BDEF是平行四边形?若存在,请求出点D的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:-10+(+6)-(-2)=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算题:
(1)(2x-y)2+2x(2y-x)-(x-y)(x+y)
(2)$\frac{{x}^{2}-4xy+4{y}^{2}}{{x}^{2}-xy}$÷(x+y-$\frac{3{y}^{2}}{x-y}$)+$\frac{1}{x}$.

查看答案和解析>>

同步练习册答案