13£®ÒÔ$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$Ϊ½âµÄ¶þÔªÒ»´Î·½³Ì×éÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x+y=0}\\{x-y=1}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+y=0}\\{x-y=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{x+y=0}\\{x-y=-2}\end{array}\right.$D£®$\left\{\begin{array}{l}{x+y=0}\\{x-y=2}\end{array}\right.$

·ÖÎö °Ñ$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$´úÈë¸÷·½³Ì×é¼ìÑé¼´¿É£®

½â´ð ½â£º·½³Ì×é$\left\{\begin{array}{l}{x+y=0¢Ù}\\{x-y=2¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º2x=2£¬¼´x=1£¬
¢Ù-¢ÚµÃ£º2y=-2£¬¼´y=-1£¬
ÔòÒÔ$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$Ϊ½âµÄ¶þÔªÒ»´Î·½³Ì×éÊÇ$\left\{\begin{array}{l}{x+y=0}\\{x-y=2}\end{array}\right.$£®
¹ÊÑ¡D£®

µãÆÀ ´ËÌ⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬·½³Ì×éµÄ½â¼´ÎªÄÜʹ·½³Ì×éÖÐÁ½·½³Ì¶¼³ÉÁ¢µÄδ֪ÊýµÄÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èç¹û3-2xÓë5x-6»¥ÎªÏà·´Êý£¬Ôòx=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬¡÷OABÈÆµãO˳ʱÕëÐýת85¡ãµ½¡÷OCD£¬ÒÑÖª¡ÏA=110¡ã£¬Èô¡ÏD=40¡ã£¬Ôò¡Ï¦ÁµÄ¶ÈÊýÊÇ£¨¡¡¡¡£©
A£®30¡ãB£®45¡ãC£®55¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³ÖÖÉúÎïæß×ÓµÄÖ±¾¶Îª0.00064m£¬ÓÿÆÑ§¼ÇÊý·¨±íʾΪ6.4¡Á10-4m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³Ð£Ô°ÉÌµê¼Æ»®´ÓÎÄÌåÅú·¢Êг¡½øÍ¬Ò»Æ·ÅƵÄÓðëÇòÅĺÍÓðëÇò£¬ÒÑÖªÒ»¸±ÓðëÇòÅĵĽø¼Û±ÈһͲÓðëÇò¶àÓÃ32Ôª£¬ÈôÓÃ1600Ôª½øÓðëÇòÅĺÍÓÃ640Ôª½øÓðëÇò£¬ÔòËù½øÓðëÇòÅĵĸ±ÊýÊǽøÓðëÇòͲÊýµÄÒ»°ë£®
£¨1£©Çó½ø¸ÃÆ·ÅƵÄÒ»¸±ÓðëÇòÅÄ¡¢Ò»Í²ÓðëÇò¸÷ÐèÒª¶àÉÙÔª£¿
£¨2£©¾­ÉÌ̸£¬ÎÄÌåÅú·¢Êг¡¸øÓèУ԰ÉÌµê½øÒ»¸±¸ÃÆ·ÅÆµÄÓðëÇòÅÄÔùËÍһͲ¸ÃÆ·ÅÆµÄÓðëÇòµÄÓŻݣ¬Èç¹ûУ԰É̵êÐèÒªÓðëÇòµÄͲÊýÊÇÓðëÇòÅĸ±ÊýµÄ11±¶»¹¶à10£¬ÇÒ¸ÃÉÌµê½øÓðëÇòÅĺÍÓðëÇòµÄ×Ü·ÑÓò»³¬¹ý3680Ôª£¬ÄÇôÉ̵ê×î¶à¿ÉÒÔ½ø¶àÉÙ¸±¸ÃÆ·ÅÆµÄÓðëÇòÅÄ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®·Ö½âÒòʽ£º
£¨1£©3y2-6xy
£¨2£©25x2-16y2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôa3=-8£¬ÔòaµÄ¾ø¶ÔÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁз½³ÌÊÇÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®x2-2x=7B£®3x-y=1C£®xy-4=0D£®x+$\frac{1}{x}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¹ØÓÚxµÄ·½³Ì$\frac{1}{4}$x2-£¨m-2£©x+m2=0
¢ÙÈô·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬ÇómµÄÖµ£»
¢ÚÇó³ö´Ëʱ·½³ÌµÄ¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸