精英家教网 > 初中数学 > 题目详情
5.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.

分析 (1)由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,于是得出结论;
(2)由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AP=2,过点P作PM⊥AD于M,得到PM=$\sqrt{3}$,AM=1,从而得到,DM=5,于是推出结论.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFB=∠FBE,
∵∠ABF=∠FBE,
∴∠ABF=∠AFB,
∴AB=AF,
同理AB=BE,
∴四边形ABEF是菱形;

(2)∵四边形ABEF是菱形,
∴AE⊥BF,
∵∠ABC=60°,
∴∠ABF=30°,∠BAP=∠FAP=60°,
∵AB=4,
∴AP=2,
如图,过点P作PM⊥AD于M,
∴PM=$\sqrt{3}$,AM=1,
∵AD=6,
∴DM=5,
∴PD=$\sqrt{{PM}^{2}{+DM}^{2}}$=$\sqrt{{(\sqrt{3})}^{2}{+5}^{2}}$=2$\sqrt{7}$.

点评 本题主要考查了平行四边形的性质,平行线的性质和菱形的判定,特殊三角形的性质,通过等量代换推出角相等推出等腰三角形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.
(1)写出所有选购方案(利用树状图或列表方法求选购方案);
(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算(x-1)(x+2)的结果是x2+x-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.要使分式$\frac{1}{x+2}$有意义,则x的取值应满足(  )
A.x=-2B.x≠2C.x>-2D.x≠-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解不等式组$\left\{\begin{array}{l}{5x-3<4x}\\{4(x-1)+3≥2x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.
(1)连接BE,求证:四边形BFDE是菱形;
(2)若AB=8cm,BC=16cm,求线段DF和EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,已知一次函数y=kx-2k(k≠0)的图象与x轴交于点A,抛物线y=ax2+bx+c(a>0)经过O、A两点,顶点为D,以点D为圆心、DA为半径作⊙D.
(1)试求含a的代数式表示b;
(2)将⊙D关于x轴对称得到⊙D′,当⊙D′恰与直线AD相切时,求⊙D的半径及抛物线的解析式;
(3)当a=$\frac{\sqrt{3}}{3}$时,如图2,设点B是⊙D上的一个动点(异于O、A两点),函数y=kx-2k(k≠0)的图象与抛物线交于另一点P(异于O、A两点),请问:是否存在点P使得∠OAP=$\frac{1}{2}$∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.用三角板画出下列图形:
(1)画∠AOB=105°;
(2)以OB为始边,在∠AOB内部画∠AOC=15°(保留作图痕迹,并写出作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若tan∠BAC=$\frac{3}{2}$,菱形OCED的面积为12,求BC的长.

查看答案和解析>>

同步练习册答案