精英家教网 > 初中数学 > 题目详情
(1)解二元一次方程组
3(x-1)=y+5
5(y-1)=3(x+5)

(2)解不等式
3-x
2
≤1-
2x-5
6
并把解集在数轴上表示出来.
分析:(1)先把原二元一次方程组中的方程都转化为一般式,然后利用消元法解方程组;
(2)先去分母,然后由不等式的基本性质解答.
解答:解:(1)由原方程组,得
3x-y-8=0,①
5y-3x-20=0,②

由①+②,解得y=7,③
把③代入①,解得x=5,
所以,原方程组的解为:
x=5
y=7


(2)由原不等式,得
9-3x≤6-2x+5,
移项、合并同类项,得
-x≤2,
解得,x≥-2.表示在数轴上为:
点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是(  )
A、
y=-2x+2
y=
1
2
x-1
B、
y=-2x+2
y=-x
C、
y=3x-8
y=
1
2
x-3
D、
y=-2x+2
y=-
1
2
x-1

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读材料,解答问题.
材料:利用解二元一次方程组的代入消元法可解形如
x2+y2=
1
2
x-y=1
的方程组.
如:由(2)得y=x-1,代入(1)消元得到关于x的方程:x2-x+
1
4
=0,∴x1=x2=
1
2

将x1=x2=
1
2
代入y=x-1得y1=y2=-
1
2
,∴方程组的解为
x1=x2=
1
2
y1=y2=-
1
2

请你用代入消元法解方程组
x+y=2…(1)
2x2-y2=1…(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

12、解二元一次方程组的基本思想是
消元
,基本方法是
代入法
加减法

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中数学 来源: 题型:

在学习解二元一次方程组时,数学老师布置了5道解方程组的课堂练习题,下课时统计全班同学解答正确的题数,情况绘成了下面的条形统计图.请你根据统计图提供的信息,计算每个学生做对的平均题数是
3.2
3.2

查看答案和解析>>

同步练习册答案