如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.
(1)判断线段AC与AE是否相等,并说明理由;
(2)求过A、C、D三点的圆的直径.
(1)AC=AE;(2)
解析试题分析:(1)由∠ACB=90°可得AD为直径,再根据AD是△ABC的角平分线,可得,即得,即可证得结论;
(2)先跟勾股定理求得AB的长,从而得到BE的长,证得△ABC∽△DBE,根据相似三角形的对应边成比例即可求得DE的长,再根据勾股定理即可求得结果。
(1)∵∠ACB=90°,
∴AD为直径,
又∵AD是△ABC的角平分线,
∴,
∴,
∴在同一个⊙O中,AC=AE;
(2)∵AC=5,CB=12,
∴AB=,
∵AE=AC=5,
∴BE=AB-AE=13-5=8,
∵AD是直径,
∴∠AED=∠ACB=90°,
∵∠B=∠B,
∴△ABC∽△DBE,
∴,
∴DE= ,
∴AD=
∴△ACD外接圆的直径为.
考点:本题考查的是圆周角定理,相似三角形的判定和性质,勾股定理
点评:解答本题的关键是熟练掌握90°的圆周角所对的弦是直径;在同圆或等圆中,等弧所对的弦相等。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com