精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.

(1)判断线段AC与AE是否相等,并说明理由;
(2)求过A、C、D三点的圆的直径.

(1)AC=AE;(2)

解析试题分析:(1)由∠ACB=90°可得AD为直径,再根据AD是△ABC的角平分线,可得,即得,即可证得结论;
(2)先跟勾股定理求得AB的长,从而得到BE的长,证得△ABC∽△DBE,根据相似三角形的对应边成比例即可求得DE的长,再根据勾股定理即可求得结果。
(1)∵∠ACB=90°, 
∴AD为直径,   
又∵AD是△ABC的角平分线,


∴在同一个⊙O中,AC=AE;    
(2)∵AC=5,CB=12,
∴AB=
∵AE=AC=5,
∴BE=AB-AE=13-5=8,       
∵AD是直径,
∴∠AED=∠ACB=90°,
∵∠B=∠B,
∴△ABC∽△DBE,   

∴DE= , 
∴AD= 
∴△ACD外接圆的直径为
考点:本题考查的是圆周角定理,相似三角形的判定和性质,勾股定理
点评:解答本题的关键是熟练掌握90°的圆周角所对的弦是直径;在同圆或等圆中,等弧所对的弦相等。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案