【题目】(2016山东省泰安市第27题)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.
(1)、求证:AC2=CD·BC;
(2)、过E作EG⊥AB,并延长EG至点K,使EK=EB.
①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;
②若∠B=30°,求证:四边形AKEC是菱形.
【答案】(1)、证明过程见解析;(2)、证明过程见解析.
【解析】
试题分析:(1)、欲证明AC2=CDBC,只需推知△ACD∽△BCA即可;(2)、①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;
②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.
试题解析:(1)、∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,
∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°, ∴∠DAC=∠EAB. 又∵E是BC的中点, ∴AE=BE,
∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴, ∴=CD·BC;
(1)、①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC. ∵EG⊥AB,AE=BE,
∴点G是AB的中点,∴HG=AG,∴∠GAH=∠GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,
∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;
②∵EK⊥AB,AC⊥AB, ∴EK∥AC, 又∵∠B=30°,∴AC=BC=EB=EC. 又EK=EB,∴EK=AC,
即AK=KE=EC=CA,∴四边形AKEC是菱形.
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长( )
A. 2 B. 3 C. 1 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中不成立的是( )
A.矩形的对角线相等
B.三边对应相等的两个三角形全等
C.两个相似三角形面积的比等于其相似比的平方
D.一组对边平行,另一组对边相等的四边形一定是平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在如图所示的直角坐标系中,有一个三角形△ABC。把△ABC向下平移6个单位,得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,请在直角坐标系中画出△A1B1C1与△A2B2C2;
(2)写出A2、B2、C2的坐标;
(3)求出△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为( )
A.25(1+x)2=64
B.25(1﹣x)2=64
C.64(1+x)2=25
D.64(1﹣x)2=25
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com