精英家教网 > 初中数学 > 题目详情
已知方程2x2-2
2
x+m=0
有两个实数根,则
(m-1)2
的化简结果是(  )
分析:根据方程有两个实数根,得到根的判别式大于等于0,求出m的范围,判断出m-1的正负,利用二次根式的化简公式即可得到结果.
解答:解:2x2-2
2
x+m=0,
∵a=2,b=-2
2
,c=m,
∴△=8-8m≥0,
解得:m≤1,即m-1≤0,
(m-1)2
=|m-1|=1-m.
故选C
点评:此题考查了根的判别式,以及二次根式的性质与化简,熟练掌握根的判别式的意义是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x=-2是方程2x2+mx-4=0的一个根,则m的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•南京)已知x1,x2是方程2x2-7x+4=0的两个根,则x1+x2=
7
2
7
2
,x1•x2=
2
2
,(x1-x22=
17
4
17
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区模拟)探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(
7
2
-x),由题意得方程:x(
7
2
-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:
y=
7
2
-x
y=
3
x
,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为
8
8
;周长为
18
18

②满足条件的矩形B的两边长为
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一元二次方程ax2+bx+c=0(a≠0)的两根是x1、x2,那么利用公式法写出两个根x1、x2,通过计算可以得出:x1+x2=-
b
a
,x1x2=
c
a
.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题:
(1)若方程2x2-4x-1=0的两根是x1、x2,则x1+x2=
2
2
,x1x2=
-
1
2
-
1
2

(2)已知方程x2-4x+c=0的一个根是2+
3
,请求出该方程的另一个根和c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:5
4
5
-[2
1
6
+(-4.8)-(-4
5
6
)]
(2)计算:-42-3×22×(
1
3
-1)÷(-1
1
3

(3)已知(x-
1
3
)2+|y+1|=0
,求4x2+2x2y-2(x2y-2xy+2x2)-xy的值.
(4)解方程:y-
y-1
2
=3-
y+2
5

查看答案和解析>>

同步练习册答案