精英家教网 > 初中数学 > 题目详情
(2012•西城区模拟)探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(
7
2
-x),由题意得方程:x(
7
2
-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:
y=
7
2
-x
y=
3
x
,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为
8
8
;周长为
18
18

②满足条件的矩形B的两边长为
9+
17
4
9+
17
4
9-
17
4
9-
17
4
分析:(1)用解一元二次方程的方法求一元二次方程的根即可;
(2)设所求矩形的两边分别是x和y,由题意得方程组,消去y化简再根据方程的判别式解答即可;
(3)①由图可知,一次函数解析式为y=-x+4.5,反比例函数解析式为y=
4
x
,组成方程组,消去y求出方程的根,再根据一元二次方程根与系数的关系求出x1+x2=4.5,x1x2=4,即可.
②利用解二元二次方程,可求出满足条件的矩形B的两边长.
解答:解:(1)x1=2,x2=
3
2
,…(4分)

(2)设所求矩形的一边是x,则另一边为(
3
2
-x),
由题意得方程:x(
3
2
-x)=1,
化简得:2x2-3x+2=0
∵b2-4ac=9-16<0,
∴原方程无解.
∴满足要求的矩形B不存在.…(8分)

(3)(每空1分)
①由图可知,一次函数解析式为y=-x+4.5,
反比例函数解析式为y=
4
x

组成方程组得:
y=-x+4.5
y=
4
x

整理得出:x2-4.5x+4=0,
∴x1+x2=4.5,x1x2=4,
∵矩形B的两边长和为4.5,周长为9,面积为4,
∴这个图象所研究的矩形A的面积为8;周长为18,
故答案为:8,9;
②由题意得出:
x+y=4.5
xy=4

解得:
x=
9+
17
4
y=
9-
17
4
x=
9-
17
4
y=
9+
17
4

则满足条件的矩形B的两边长为
9+
17
4
9-
17
4
…(12分).
故答案为:
9+
17
4
9-
17
4
点评:此题主要考查了根与系数的关系以及二元二次方程解法、利用函数图象得函数解析式等知识,根据图象得出函数解析式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程组
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)已知:如图,A点坐标为(-
32
,0)
,B点坐标为(0,3).
(1)求过A,B两点的直线解析式;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=
20
20

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,
从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区二模)将代数式x2-6x+10化为(x-m)2+n的形式(其中m,n为常数),结果为
(x-3)2+1
(x-3)2+1

查看答案和解析>>

同步练习册答案