精英家教网 > 初中数学 > 题目详情
(2012•西城区一模)已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在求出P点坐标,若不存在请说明理由.
分析:(1)由△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,即可判定不论a为何实数,此方程总有两个不相等的实数根;
(2)首先设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1•x2=a-2,由两交点的距离是
13
,可得:(x1-x22=13,即可得(x1+x22-4x1•x2=13,继而求得a的值;
(3)首先设点P的坐标为(x0,y0),由AB=
13
,△PAB的面积为
3
13
2
,即可求得y0的值,继而求得P点坐标.
解答:(1)证明:∵△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,
∴不论a为何实数,此方程总有两个不相等的实数根.

(2)解:设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1•x2=a-2,
∵两交点的距离是
13

∴|x1-x2|=
(x1-x2)2
=
13

即:(x1-x22=13,
变形为:(x1+x22-4x1•x2=13,
∴(-a)2-4(a-2)=13,
整理得:(a-5)(a+1)=0,
解方程得:a=5或-1,
又∵a<0,
∴a=-1,
∴此二次函数的解析式为y=x2-x-3.

(3)解:设点P的坐标为(x0,y0),
∵函数图象与x轴的两个交点间的距离等于
13

∴AB=
13

∴S△PAB=
1
2
AB•|y0|=
3
13
2

13
|y0|
2
=
3
13
2

即:|y0|=3,
解得:y0=±3,
当y0=3时,x02-x0-3=3,即(x0-3)(x0+2)=0,
解此方程得:x0=-2或3,
当y0=-3时,x02-x0-3=-3,即x0(x0-1)=0,
解此方程得:x0=0或1,
综上所述,所以存在这样的P点,P点坐标是(-2,3)或(3,3)或(0,-3)或(1,-3).
点评:此题属于二次函数的综合题,考查了根的判别式、根与系数的关系、两点间的距离公式以及点与二次函数的关系.此题难度较大,注意掌握方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)把(x-1)2-9因式分解的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程组
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=
20
20

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,
从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.
(1)如图1,当∠C=45°时,请写出图中一对相等的线段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如图2,若BD=2,BA=
3
,求AD的长及△ACD的面积.

查看答案和解析>>

同步练习册答案