分析 (1)首先证明△AFC≌△DFE,根据全等三角形对应边相等可得AC=DE,再根据一组对边平行且相等的四边形是平行四边形可得结论;
(2)首先证明四边形ADBE为平行四边形,再根据等腰三角形的性质可得AD⊥CB,进而可得四边形ADBE为矩形.
解答
(1)证明:∵DE∥AC,
∴∠CAF=∠EDF,
∵点F是AD的中点,
∴FA=DF,
在△AFC和△DFE中
$\left\{\begin{array}{l}{∠AFC=∠DFE}\\{FA=FD}\\{∠CAF=∠EDF}\end{array}\right.$
∴△AFC≌△DFE(ASA),
∴AC=DE,
∴四边形ACDE是平行四边形;
(2)解:四边形ADBE为矩形,理由如下:
∵四边形ACDE是平行四边形,
∴AE=CD且AE∥CB,
∵点D是BC的中点,
∴CD=DB,
∴AE=BD且AE∥DB,
∴四边形ADBE为平行四边形,
又∵AB=AC,
∴AD⊥CB,
∴∠ADB=90°,
∴四边形ADBE为矩形.
点评 此题主要考查了平行四边形的判定和性质,以及矩形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com