精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线ly=﹣1.

(1)求抛物线的解析式;

(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

【答案】(1)抛物线的解析式为y=x2﹣x+1.(2)P的坐标为(,﹣1).(3)定点F的坐标为(2,1).

【解析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;

(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;

(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.

1)∵抛物线的顶点坐标为(2,0),

设抛物线的解析式为y=a(x-2)2

∵该抛物线经过点(4,1),

∴1=4a,解得:a=

∴抛物线的解析式为y=(x-2)2=x2-x+1.

(2)联立直线AB与抛物线解析式成方程组,得:

,解得:

∴点A的坐标为(1,),点B的坐标为(4,1).

作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).

∵点B(4,1),直线ly=-1,

∴点B′的坐标为(4,-3).

设直线AB′的解析式为y=kx+b(k≠0),

A(1,)、B′(4,-3)代入y=kx+b,得:

,解得:

∴直线AB′的解析式为y=-x+

y=-1时,有-x+=-1,

解得:x=

∴点P的坐标为(,-1).

(3)∵点M到直线l的距离与点M到点F的距离总是相等,

∴(m-x02+(n-y02=(n+1)2

∴m2-2x0m+x02-2y0n+y02=2n+1.

∵M(m,n)为抛物线上一动点,

∴n=m2-m+1,

∴m2-2x0m+x02-2y0m2-m+1)+y02=2(m2-m+1)+1,

整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.

∵m为任意值,

∴定点F的坐标为(2,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.

(1)证明:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:

如图2,延长ACE,使CE=CD,连接DE,AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.

(1) 判定ABD AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);

(2)ACB 与∠ABC的数量关系为:___________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一张三角形纸片ABC,∠A=80°,点DAC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则C的度数可以是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知成正比例,为常数

1)试说明:的一次函数;

2)若时,时,,求函数关系式;

3)将(2)中所得的函数图象平移,使它过点,求平移后的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中的位置如图所示.

1)作出关于轴对称的,并写出各顶点的坐标;

2)将向右平移6个单位,作出平移后的并写出各顶点的坐标;

3)观察,它们是否关于某直线对称?若是,请用粗线条画出对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)如图在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2

(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+2x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.

(1)求该抛物线的表达式;

(2)M是线段BC上一点,过点M作直线ly轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;

(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=CAO,求点D的坐标.

查看答案和解析>>

同步练习册答案