分析 ①CD是平行四边形的一条边,那么有AB=CD;②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,证△DBN≌△CAM,推出DN=CM=a,BN=AM=10-a,得出D((10-a,6+a),由勾股定理得:CD2=(10-a-a)2+(6+a+a)2=8a2-16a+100=8(a-1)2+128,求出即可.
解答
解:有两种情况:
①CD是平行四边形的一条边,那么有AB=CD=$\sqrt{1{0}^{2}+{6}^{2}}$=2$\sqrt{34}$,
②CD是平行四边形的一条对角线,
过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,
则∠BND=∠DFA═∠CMA=∠QFA=90°,
∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,
∵四边形ACBD是平行四边形,
∴BD=AC,∠C=∠D,BD∥AC,
∴∠BDF=∠FQA,
∴∠DBN=∠CAM,
∵在△DBN和△CAM中
$\left\{\begin{array}{l}{∠BND=∠AMC}\\{∠DBN=∠CAM}\\{BD=AC}\end{array}\right.$
∴△DBN≌△CAM(AAS),
∴DN=CM=a,BN=AM=10-a,
D((10-a,6+a),
由勾股定理得:CD2=(10-a-a)2+(6+a+a)2=8a2-16a+136=8(a-1)2+128,
当a=1时,CD有最小值,是$\sqrt{128}$=8$\sqrt{2}$,
∵8$\sqrt{2}$<2$\sqrt{34}$,
∴CD的最小值是8$\sqrt{2}$.
故答案为:8$\sqrt{2}$.
点评 本题考查了平行四边形性质,全等三角形的性质和判定,二次函数的最值的应用,关键是能得出关于a的二次函数解析式,题目比较好,难度偏大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 平均数为6,方差为1 | B. | 平均数为6,方差为4 | ||
| C. | 平均数为8,方差为1 | D. | 平均数为8,方差为4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com