精英家教网 > 初中数学 > 题目详情
如图,在直角三角形AOB中,∠OAB=30°,AB=4
3
,S△AOB=6
3

(1)求点A、B的坐标;
(2)点P在线段OA上,
①当直线BP将△AOB分成面积相等的两部分时,求直线BP的解析式;
②PE⊥AB于E,连接BP.是否存在点P,使得PB与PE的和最小?若存在,请求出满足条件时点P的坐标;若不存在,请说明理由
分析:(1)根据直角三角形30°角所对的直角边等于斜边的一半求出OB的长度,再利用三角形的面积公式求出AO的长度,从而得解;
(2)①根据三角形的面积公式求出OP的长,求出点P的坐标,再利用待定系数法列式求解即可;
②作△AOB关于y轴的对称图形△AOC,可得△ABC是等边三角形,作BF⊥AC,根据垂线段最短可得BF与y轴的交点就是所要求作的点P,求出∠BAP=∠ABP=30°,根据等角对等边可得AP=BP,再根据直角三角形30°角所对的直角边等于斜边的一半可得BP=2OP,然后代入数据求出OP的长度,从而求出点P的坐标.
解答:解:(1)∵∠OAB=30°,AB=4
3

∴OB=
1
2
AB=
1
2
×4
3
=2
3

∵S△AOB=
1
2
OB•OA=
1
2
×2
3
•OA=6
3

∴OA=6,
∴点A、B的坐标为A(0,6),B(2
3
,0);

(2)①当点P为线段OA的中点时,直线BP将△AOB分成面积相等的两部分,
∴点P的坐标为(0,3),
设直线BP的解析式为y=kx+b,
b=3
2
3
k+b=0

解得
k=-
3
2
b=3

∴直线BP的解析式为y=-
3
2
x+3;
②当E为线段AB的中点时,PE与PB的和最小.
理由如下:
作△AOB关于y轴的对称图形△AOC,
∵∠OAB=30°,
∴△ABC是等边三角形,
过点B作BF⊥AC交OA于点P,过点P作PE⊥AB,根据轴对称性可知PE=PF,根据垂线段最短可知点P为所求作的点,
根据等边三角形的性质,PA=PB,∠PBO=30°,
∴∠ABP=60°-30°=30°,
∴∠ABP=∠BAO=30°,
∴AP=BP,
在Rt△PBO中,∠PBO=30°,
∴PB=2PO,
∴OA=OP+AP=OP+2OP=6,
解得OP=2,
∴点P的坐标为(0,2).
点评:本题综合考查了一次函数的问题,待定系数法求直线的解析式,直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的性质,以及轴对称的性质,综合性较强,作轴对称图形,找出点P的位置然后再进行说明求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角三角形ABC中∠C=90°,则sinA=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形中,一直角边比另一直角边长1,且斜边长为5.
(1)请画出这个直角三角形的内切圆;
(2)并求出此内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,AD为斜边上的垂线,AE为角平分线,AF为中线,
(1)证明:AF=BF=CF;
(2)写出∠FAE和∠DAE的关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,∠C=90°,AB=4,阴影部分的面积为(  )
A、2πB、3πC、4πD、6π

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=
5cm或10cm
时,才能使△ABC和△APQ全等.

查看答案和解析>>

同步练习册答案