精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ABC=90°.AB=BC.点D是线段AB上的一点,连结CD.过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:① = ;②若点D是AB的中点,则AF= AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若 = ,则SABC=9SBDF , 其中正确的结论序号是( )

A.①②
B.③④
C.①②③
D.①②③④

【答案】C
【解析】解:依题意可得BC∥AG,
∴△AFG∽△BFC,

又AB=BC,∴
故结论①正确;
如右图,∵∠1+∠3=90°,∠1+∠4=90°,
∴∠3=∠4.
在△ABG与△BCD中,

∴△ABG≌△BCD(ASA),
∴AG=BD,又BD=AD,
∴AG=AD;
在△AFG与△AFD中,
∴△AFG≌△AFD(SAS)
∵△ABC为等腰直角三角形,∴AC= AB;
∵△AFG≌△AFD,∴AG=AD= AB= BC;
∵△AFG∽△BFC,∴ = ,∴FC=2AF,
∴AF= AC= AB.
故结论②正确;
当B、C、F、D四点在同一个圆上时,
∴∠2=∠ACB
∵∠ABC=90°,AB=BC,
∴∠ACB=∠CAB=45°,
∴∠2=45°,
∴∠CFD=∠AFD=90°,
∴CD是B、C、F、D四点所在圆的直径,
∵BG⊥CD,

∴DF=DB,故③正确;
,∵AG=BD,
,∴ = ,∴AF= AC,∴SABF= SABC;∴SBDF= SABF
∴SBDF= SABC , 即SABC=12SBDF
故结论④错误.
故选C.

【考点精析】关于本题考查的解直角三角形,需要了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.

(1)当△ABD的面积为4时,
①求点D的坐标;
②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;
(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y= (>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣ 的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.
(1)点G在BE上,且∠BDG=∠C,求证:DGCF=DMEG;
(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连结BC、DC.
(1)求证:△ABC≌△ADC;
(2)延长AB、DC交于点E,若EC=5cm,BC=3cm,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在刚刚闭幕的2016全国“两会”,民生话题依然是社会焦点,某市记者为了了解百姓对“两会民生话题”的聚焦点,随机调查了部分市民,并对调查结果进行整理.绘制了如图所示的统计图表(不完整).
頻数分布表

组别

焦点话题

频数(人数)

A

医疗卫生

100

B

食品安全

m

C

教育住房

40

D

社会保障

80

E

生态环境

n

F

其他

60

请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= . 扇形统计图中E组,F组所占的百分比分别为
(2)该市现有人口大约800万,请你估计其中关注B组话题的人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注A组话题的概率是多少?

查看答案和解析>>

同步练习册答案