分析 (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=2$\sqrt{5}$,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,根据切线的性质得到OD⊥EF,求得AE∥OD,根据相似三角形的性质即可得到结论.
解答 解:(1)直线FE与⊙O相切,DE是切线;
连接OD,
∵∠CAB的平分线是AD,
∴∠CAD=∠DAB.
∵OA=OD,
∴∠OAD=∠ODA.
∴∠EAD=∠ADO,
∴AE∥OD,
∵∠AED=90°,
∴∠ODE=90°.
∴直线DE与⊙O相切;
(2)连接BD,
∵ED=2,AE=4,
∴AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=2$\sqrt{5}$,
∵AB是⊙O的直径,![]()
∴∠ADB=90°,
∵∠EAD=∠BAD,
∴△ADE∽△ABD,
∴$\frac{AE}{AD}=\frac{AD}{AB}$,
∴AB=5,
∴⊙O 的半径=$\frac{5}{2}$,
∴OD=AO=OB=$\frac{5}{2}$,
∵直线DE与⊙O相切,
∴OD⊥EF,
∴AE∥OD,
∴△ODF∽△EAF,
∴$\frac{OD}{AE}=\frac{OF}{AF}$,即$\frac{\frac{5}{2}}{4}=\frac{AF-\frac{5}{2}}{AF}$,
∴AF=$\frac{20}{3}$.
点评 本题考查的是直线与圆的位置关系,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com