精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCD的周长为16厘米,上底CD=3厘米,下底AB=7厘米,分别延长AD和BC交于点P,求△PCD的周长.
分析:由四边形ABCD是梯形,CD∥AB,即可得△PDC∽△PAB,根据相似三角形的对应边成比例,即可证得
CD
AB
=
PD
PA
=
PC
PB
=
3
7
,即可得
PD
AD
=
PC
BC
=
PD+PC
AD+BC
=
3
4
,又由梯形ABCD的周长为16厘米,上底CD=3厘米,下底AB=7厘米,求得AD+BC的长,即可求得PD+PC的长,继而求得答案.
解答:解:∵四边形ABCD是梯形,CD∥AB,
∴△PDC∽△PAB,
CD
AB
=
PD
PA
=
PC
PB
=
3
7

PD
AD
=
PC
BC
=
3
4

PD
AD
=
PC
BC
=
PD+PC
AD+BC
=
3
4

∵梯形ABCD的周长为16厘米,上底CD=3厘米,下底AB=7厘米,
∴AD+BC=16-3-7=6(厘米),
∴PD+PC=
3
4
(AD+BC)=
3
4
×6=
9
2
(厘米),
∴△PCD的周长为:PD+PC+CD=
9
2
+3=
15
2
(厘米).
点评:此题考查了相似三角形的判定与性质以及比例的性质.此题难度适中,注意数形结合思想与整体思想的应用,注意掌握比例变形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案