精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=ax2+bx+c(a≠0)图象的一部分如图所示,其对称轴为x=2,与x轴的一个交点是(﹣1,0),有以下结论:①abc>0;②4a﹣2b+c<0;③4a+b=0④抛物线与x轴的另一个交点是(5,0)⑤若点(﹣3,y1)(﹣6,y2)都在抛物线上,则y1<y2 . 其中正确的是 . (只填序号)

【答案】①③④⑤
【解析】解:①∵抛物线开口向下, ∴a<0,
∵对称轴是:x=2,
∴a、b异号,
∴b>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc>0,
∴选项①正确;
②由图象得:当x=﹣2时,y>0,
∴4a﹣2b+c>0,
∴选项②不正确;
③抛物线对称轴是:x=﹣ =2,
b=﹣4a,
4a+b=0,
∴选项③正确;
④由对称性得:抛物线与x轴的另一个交点为(5,0),
∴选项④正确;
⑤∵对称轴是:x=2,且开口向上,
∴当x<2时,y随x的增大而减小,
∵﹣3>﹣6,
∴y1<y2
∴选项⑤正确;
所以答案是:①③④⑤.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n“F运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数);并且运算重复进行.例如,取n=26,第3“F运算的结果是11.则:若n=449,则第449“F运算的结果是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为D,求△BCD的面积;
(3)若直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtACB中,∠ACB=90°,ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交ACBC的延长线于E,D.过PPFADAC的延长线于点H,交BC的延长线于点F,连接AFDH于点G.则下列结论:①∠APB=45°;PF=PA;BD﹣AH=AB;DG=AP+GH.其中正确的是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(参考数据:sin22°≈ ,cos22° ,tan22
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是(

A.点(0,3)
B.点(2,3)
C.点(5,1)
D.点(6,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红家有一块L形的菜地,要把L形的菜地按如图所示分成两块面积相等的梯形,种上不同的蔬菜.这两个梯形的上底都是a m,下底都是b m,高都是(b-a) m.

(1)求小红家这块L形菜地的面积.(用含a、b的代数式表示

(2)a2+b2=15,ab=5,求小红家这块L形菜地的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值

解:设另一个因式是(2x+b),

根据题意,得2x2+x+a=(x+2)(2x+b),

展开,得2x2+x+a =2x2+(b+4)x+2b

所以,解得

所以,另一个因式是(2x3),a 的值是6.

请你仿照以上做法解答下题:已知二次三项式3x2 10x m 有一个因式是(x+4),求另一个因式以及m的值.

查看答案和解析>>

同步练习册答案