在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB绕点A按逆时针方向旋转90°至AC.
![]()
(1)求点C的坐标;
(2)若抛物线y=-x2+ax+4经过点C.
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
C的坐标为(3,﹣1);
(2)①抛物线的解析式为y=﹣
x2+
x+2;
②存在点P,△ABP是以AB为直角边的等腰直角三角形,符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.
【解析】
试题分析:(1)过点C作CD垂直于x轴,由线段AB绕点A按逆时针方向旋转90°至AC,根据旋转的旋转得到AB=AC,且∠BAC为直角,可得∠OAB与∠CAD互余,由∠AOB为直角,可得∠OAB与∠ABO互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA可证明三角形ACD与三角形AOB全等,根据全等三角形的对应边相等可得AD=OB,CD=OA,由A和B的坐标及位置特点求出OA及OB的长,可得出OD及CD的长,根据C在第四象限得出C的坐标;
(2)①由已知的抛物线经过点C,把第一问求出C的坐标代入抛物线解析式,列出关于a的方程,求出方程的解得到a的值,确定出抛物线的解析式;
②假设存在点P使△ABP是以AB为直角边的等腰直角三角形,分三种情况考虑:(i)A为直角顶点,过A作AP1垂直于AB,且AP1=AB,过P1作P1M垂直于x轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP1,利用AAS可证明三角形AP1M与三角形ACD全等,得出AP1与P1M的长,再由P1为第二象限的点,得出此时P1的坐标,代入抛物线解析式中检验满足;(ii)当B为直角顶点,过B作BP2垂直于BA,且BP2=BA,过P2作P2N垂直于y轴,如图所示,同理证明三角形BP2N与三角形AOB全等,得出P2N与BN的长,由P2为第三象限的点,写出P2的坐标,代入抛物线解析式中检验满足;(iii)当B为直角顶点,过B作BP3垂直于BA,且BP3=BA,如图所示,过P3作P3H垂直于y轴,同理可证明三角形P3BH全等于三角形AOB,可得出P3H与BH的长,由P3为第四象限的点,写出P3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P的坐标.
试题解析:(1)过C作CD⊥x轴,垂足为D,
![]()
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,﹣2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C为第四象限的点,
∴C的坐标为(3,﹣1);
(2)①∵抛物线y=﹣
x2+ax+2经过点C,且C(3,﹣1),
∴把C的坐标代入得:﹣1=﹣
+3a+2,解得:a=
,
则抛物线的解析式为y=﹣
x2+
x+2;
②存在点P,△ABP是以AB为直角边的等腰直角三角形,
(i)若以AB为直角边,点A为直角顶点,
则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,
![]()
∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(﹣1,1),经检验点P1在抛物线y=﹣
x2+
x+2上;
(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,
![]()
同理可证△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣
x2+
x+2上;
(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,
![]()
同理可证△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣
x2+
x+2上;
则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.
考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.
科目:初中数学 来源:2013-2014学年江苏省南京市六合区中考一模数学试卷(解析版) 题型:解答题
先化简,再求值:[(a-2)2-(a+2)(a-2)](a-1),其中a=-2.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省兴化市九年级中考网上阅卷适应性训练(即一模)数学试卷(解析版) 题型:选择题
如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是( )
![]()
A.23° B.22° C.37° D.67°
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省兴化市九年级中考网上阅卷适应性训练(二模)数学试卷(解析版) 题型:选择题
由于今年多次“雾霾中国”,国人对空气质量日益关注.某市2014年4月份一周空气质量报告中某种污染指数的数据是:32,36,32,35,30,32,31,这组数据的中位数和众数分别是( )
A.32,31 B.33,32 C.32,32 D.32,35
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏大丰刘庄第二初中九年级下学期第一次月考数学试卷(解析版) 题型:解答题
如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=
.
![]()
(1)求AE的长; (2)求ΔCEF的周长和面积.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏大丰刘庄第二初中九年级下学期第一次月考数学试卷(解析版) 题型:填空题
如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是 m.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏仪征大仪中学九年级3月月考数学试卷(解析版) 题型:解答题
如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:
![]()
(1)一个长方体的体积是 cm3;
(2)求图2中线段AB对应的函数关系式;
(3)求注水速度v和圆柱形水槽的底面积S.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年新人教版浙江永嘉桥下瓯渠中学中考数学总复习四练习卷(解析版) 题型:填空题
平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为 W.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com