如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接DB,过点E作EM∥BD,交BA的延长线于点M.
![]()
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.
(1)
;(2)证明见解析;(3)
.
【解析】
试题分析:(1)连结OE,根据已知条件得出OC=
OE,由勾股定理可求出OE的长;
(2)由(1)知∠AOE=60°,
,从而得出∠BDE=60°,又BD∥ME,所以∠MED=∠BDE=60°即∠MEO=90°,从而得证;
(3)连结OF,由∠DPA=45°知∠EOF=2∠EDF=90°所以
,通过计算得出结论.
试题解析:连结OE,如图:
![]()
∵DE垂直平分半径OA
∴OC=
,
,
∴∠OEC=30°
∴![]()
(2)由(1)知:∠AOE=60°,
,
∴![]()
∴∠BDE=60°
∵BD∥ME,
∴∠MED=∠BDE=60°
∴∠MEO=90°
∴EM是⊙O的切线。
(3)连结OF
∵∠DPA=45°
∴∠EOF=2∠EDF=90°
∴![]()
考点: 1.垂径定理;2.圆周角定理;3.扇形的面积.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:初中数学解题思路与方法 题型:047
已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com