精英家教网 > 初中数学 > 题目详情

【题目】如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为(  )

A. B. 2 C. 3 D. 4

【答案】C

【解析】

求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.

圆锥底面是以BC为直径的圆,圆的周长是

AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π

设展开后的圆心角是,则

解得:n=180

即展开后

则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,

由勾股定理得:

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为( )

A.45°
B.90°
C.120°
D.135°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
(1)已知抛物线的焦点F(0, ),准线l: ,求抛物线的解析式;
(2)已知抛物线的解析式为:y=x2﹣n2 , 点A(0, )(n≠0),B(1,2﹣n2),P为抛物线上一点,求PA+PB的最小值及此时P点坐标;
(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作⊙M,⊙M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点A旋转60°到△ADE的位置,点C的对应点为E,连接CD,若AC=BC=1,则CD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在RtABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P2cm/sQ1cm/s的速度同时出发,设运动时间为ts),解答下列问题:

1t为何值时,△PBQ是等边三角形?

2PQ在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算与解不等式式
(1)计算(π﹣ 0+( 1
(2)解不等式组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE﹕EB=1﹕2,

(1)求△AEF与△CDF的周长的比;
(2)如果SAEF=5cm2 , 求SCDF

查看答案和解析>>

同步练习册答案