精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD的外侧,作等边ADE,则BED的度数是

【答案】

【解析】

试题分析:根据正方形的性质,可得AB与AD的关系,BAD的度数,根据等边三角形的性质,可得AE与AD的关系,AED的度数,根据等腰三角形的性质,可得AEB与ABE的关系,根据三角形的内角和,可得AEB的度数,根据角的和差,可得答案.四边形ABCD是正方形,AB=AD,BAD=90°等边三角形ADE,AD=AE,DAE=AED=60°BAE=BAD+DAE=90°+60°=150°,AB=AE,AEB=ABE=180°﹣∠BAE÷2=15°BED=DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+bx轴于点A,交y轴于点B,线段AB的中点E的坐标为(2,1).

(1)k,b的值;

(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知购买1个足球和1个篮球共需130元,购买2个足球和3个篮球共需340元.

(1)求每个足球和每个篮球的售价;

(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级各班分别选出3名学生组成班级代表队,参加知识竞赛,得分最多的班级为优胜班级,各代表队比赛结果如下:

班级

七(1)

七(2)

七(3)

七(4)

七(5)

七(6)

七(7)

七(8)

七(9)

七(10)

得分

85

90

90

100

80

100

90

80

85

90

(1)写出表格中得分的众数、中位数;

(2)学校从获胜班级的代表队中各抽取1名学生组成“绿色环保监督”小组,小明、小红分别是七(4)班和七(6)班代表队的学生,用列表法或画树状图的方法说明同时抽到小明和小红的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列3根小木棒能摆成三角形的是(  )

(1)5cm,12cm,13cm;(2)3cm,3cm,4cm;(3)4cm,3cm,7cm;(4)2cm,3cm,6cm.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x2+(k﹣1)x+25是一个完全平方式,则常数k的值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.

(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD为等邻边四边形.

(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.

(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是(
A.25,26
B.25,26.5
C.27,26
D.25,28

查看答案和解析>>

同步练习册答案