精英家教网 > 初中数学 > 题目详情
已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
分析:由EB=EC,根据等腰三角形的性质得到∠EBD=∠ECD,而∠ABE=∠ACE,则∠ABC=∠ACB,根据等腰三角形的判定得AB=AC,有EB=EC,AE为公共边,根据全等三角形的判定易得△ABE≌△ACE,由全等的性质即可得到结论.
解答:证明:∵EB=EC,
∴∠EBD=∠ECD,
又∵∠ABE=∠ACE,
∴∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中
AB=AC
EB=EC
AE=AE

∴△ABE≌△ACE,
∴∠BAE=∠CAE.
点评:本题考查了全等三角形的判定与性质:三条边对应相等的两个三角形全等;全等三角形的对应角相等.也考查了等腰三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•东城区)已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

同步练习册答案