精英家教网 > 初中数学 > 题目详情
已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.

(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
(1)延长AB交CF于点D,证明BM为△ADF的中位线即可。
(2)作辅助线,推出BM、ME是两条中位线。
(3)作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME

分析:(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可。
(2)如图2,作辅助线,推出BM、ME是两条中位线。
(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME。
解:(1)证明:
如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,

∴AB=BC=BD。
∴点B为线段AD的中点。
又∵点M为线段AF的中点,
∴BM为△ADF的中位线。
∴BM∥CF。
(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,

∴AB=BC=BD=a,AC=AD=a,
∴点B为AD中点,又点M为AF中点。
∴BM=DF。
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=a。
∴点E为FG中点,又点M为AF中点。
∴ME=AG。
∵CG=CF=a,CA=CD=a,∴AG=DF=a。
∴BM=ME=
(3)证明:如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,

∴AB=BC=BD,AC=CD。
∴点B为AD中点。
又点M为AF中点,∴BM=DF。
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG。
∴点E为FG中点。
又点M为AF中点,∴ME=AG。
在△ACG与△DCF中,∵
∴△ACG≌△DCF(SAS)。
∴DF=AG,∴BM=ME。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;

②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;

③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;

根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△   ≌△   ,进而得到线段  =  
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,的外角,的平分线与的平分线交于点的平分线与的平分线交于点,……,的平分线与的平分线交于点,设,则.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE。
求证:四边形BCDE是矩形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E.

(1)若∠ADC+∠ABC=180°,求证:AD+AB =2AE;
(2)若AD+AB =2AE,求证:CD=CB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰三角形的一个角是40°,则另外两个角是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为
A.平行B.垂直且平分C.斜交D.垂直不平分

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是     (写出1个即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,点D、E分别在AB、AC上,且DE//BC,,则SADE:SABC=_____________

查看答案和解析>>

同步练习册答案