精英家教网 > 初中数学 > 题目详情

如图,△ABC是⊙O的内接三角形,直径HF交AC于D,HF、BC的延长线交于点E.
(1)若HF⊥AB,求证:∠OAD=∠E;
(2)若A点是下半圆上一动点,当点A运动到什么位置时,△CDE的外心在△CDE一边上?请简述理由.

解:(1)证明:连接OB,
∵HF⊥AB,
=
∴∠AOH=∠ACB=∠AOB,
∵∠AOD+∠AOH=180°,∠ECD+∠ACB=180°,
∴∠AOD=∠ECD,
∵∠ODA=∠CDE,
∴∠OAD=∠E;

(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
理由:①当AB是直径时,△CDE的外心在△CDE一边上.
∵AB是直径,
∴∠ACB=90°,
∴∠DCE=90°,
即△CDE是直角三角形,
∴△CDE的外心在△CDE边DE上;
②当A运动到使AC⊥HF时,△CDE是直角三角形.
此时△CDE的外心在△CDE边CE上.
综上两种情况下,当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
分析:(1)首先连接OB,由HF⊥AB,根据垂径定理与圆周角定理,即可求得∠AOH=∠ACB,继而可得∠AOD=∠ECD,又由∠ODA=∠CDE,即可证得∠OAD=∠E;
(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.因为直径所对的圆周角是直角,直角三角形的外心在其一边上.
点评:此题考查了圆周角定理、垂径定理以及三角形外心的知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意准确作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是锐角三角形,以BC为直径作⊙O,AD是⊙O的切线,从AB上一点E作AB的垂线交AC的延长线于F,若
AB
AF
=
AE
AC

求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是
①②③
①②③
.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是BC边的中点,点E在AC的延长线上,且∠CDE=30°.若AD=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,则∠ABD=
120
120
度.

查看答案和解析>>

同步练习册答案