精英家教网 > 初中数学 > 题目详情
9.若数据8,9,7,8,x,2的平均数是7,则这组数据的众数是8.

分析 先根据平均数的定义求得x的值,再根据众数的定义即可得出答案.

解答 解:由平均数为7可得8+9+7+8+x+2=7×6,
解得:x=8,
∵这组数据中8出现次数最多,有3次,
∴这组数据的众数为8,
故答案为:8.

点评 本题主要考查平均数和众数,熟练掌握平均数和众数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.小丽家在铺设地板时,用的是边长相等的三种正多边形,已知第一种正多边形的一个内角是120°,另一种是正方形,而且铺地板时,在一个顶点处,这三种正多边形都是一个,则第三种正多边形应是正12边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.方程25%x+60%=0.5的解是x=-0.4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.图1是边长分别为4$\sqrt{3}$和2的两个等边三角形纸片ABC和DEC叠放在一起.
(1)①图1中△DEC的面积是$\sqrt{3}$
②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是6$\sqrt{3}$.
(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.
(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2$\sqrt{5}$,AC=2,求四边形AODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在?ABCD中,若∠BAD与∠ABC的角平分线分别交CD于点E,F,且AD=2EF=2,则AB=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.请你列不等式:“x的3倍与4的差不小于6”为3x-4≥6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,把一块直角三角板的30°角的顶点放在直尺的一边上,若∠2=100°,则∠1的度数为(  )
A.40°B.80°C.50°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.

(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.

查看答案和解析>>

同步练习册答案