分析 正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.
解答 解:∵正方形的一个内角度数为180°-360°÷4=90°,正六边形的一个内角度数为180°-360°÷6=120°,
∴需要的多边形的一个内角度数为360°-90°-120°=150°,
∴需要的多边形的一个外角度数为180°-150°=30°,
∴第三个正多边形的边数为360÷30=12.
故答案为:12.
点评 此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 68 | B. | 88 | C. | 91 | D. | 93 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com