精英家教网 > 初中数学 > 题目详情
(2005•温州)如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

【答案】分析:(1)因为S△FAE:S四边形AOCE=1:3,所以可得S△FAE:S△FOC=1:4,利用四边形AOCB是正方形,可得AB∥OC,△FAE∽△FOC,利用相似三角形的面积比等于相似比的平方,可得到AE:OC=1:2,结合正方形的边长即可求出AE=3,所以点E的坐标是(3,6);
(2)可设直线EC的解析式是y=kx+b,因为直线y=kx+b过E(3,6)和C(6,0),利用待定系数法即可求出直线EC的解析式.
解答:解:(1)∵S△FAE:S四边形AOCE=1:3,
∴S△FAE:S△FOC=1:4,
∵四边形AOCB是正方形,
∴AB∥OC,
∴△FAE∽△FOC,
∴AE:OC=1:2,
∵OA=OC=6,
∴AE=3,
∴点E的坐标是(3,6).

(2)设直线EC的解析式是y=kx+b,
∵直线y=kx+b过E(3,6)和C(6,0),
,解得:
∴直线EC的解析式是y=-2x+12.
点评:本题需利用待定系数法和相似三角形的性质来解决问题,另外本题也是一道综合性较强的题目,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•温州)如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《三角形》(04)(解析版) 题型:解答题

(2005•温州)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2005•温州)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于点F、E,且,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源:2001年云南省昆明市中考数学试卷(解析版) 题型:解答题

(2005•温州)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.

查看答案和解析>>

同步练习册答案