精英家教网 > 初中数学 > 题目详情

【题目】在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.
(1)求△ABC的面积;
(2)若P、Q关于原点成中心对称,求P点的坐标;
(3)若△QPC≌△ABC,求Q点的坐标.

【答案】
(1)

解:依照题意画出图形,如图1所示.

令y=﹣x+3中y=0,则x=3,

∴A(3,0);

令y=3x﹣5中y=0,则x=

∴B( ,0);

联立两直线解析式成方程组,得: ,解得:

∴C(2,1).

SABC= AByC= (3﹣ )×1=


(2)

解:∵点P在直线y=﹣x+3上,

∴设P(m,﹣m+3),

∵P、Q关于原点成中心对称,

∴Q(﹣m,m﹣3).

∵点Q在直线y=3x﹣5上,

∴m﹣3=﹣3m﹣5,

解得:m=﹣

∴点P的坐标为(﹣


(3)

解:依照题意画出图形,如图2所示.

若要△QPC≌△ABC,只需PQ∥AB,且PQ=AB即可.

设P(3﹣n,n),则Q( ,n),

∵PQ=AB,

﹣(3﹣n)=3﹣

解得:n=2,

∴点Q( ,2).


【解析】(1)分别令y=﹣x+3与y=3x﹣5中y=0求出x值,即可得出点A、B的坐标,联立两直线解析式成方程组,解方程组即可求出点C的坐标,再结合三角形的面积公式即可求出△ABC的面积;(2)由点P在直线y=﹣x+3上,设点P(m,﹣m+3),由P、Q关于原点对称,由此可找出Q(﹣m,m﹣3),由点Q的坐标利用一次函数图象上点的坐标特征即可找出关于m的一元一次方程,解方程求出m值,将其代入点P的坐标中即可得出结论;(3)由△QPC≌△ABC可得出PQ∥AB,且PQ=AB,设P(3﹣n,n),则Q( ,n),再由PQ=AB即可得出关于n的一元一次方程,解方程即可求出n值,将其代入点Q的坐标中,即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是(
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义{a,b,c}为函数y=ax2+bx+c的“特征数”.
(1)“特征数”为{﹣1,2,3}的函数解析式为 , 将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为
(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;
(3)定义“特征数”的运算:①{a1 , b1 , c1}+{a2 , b2 , c2}={a1+a2 , b1+b2 , c1+c2};②λ{a1 , b1 , c1}={λa1 , λb1 , λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺规画圆O,使圆O过A、D两点,且圆心O在边AC上.(保留作图痕迹,不写作法)
(2)求证:BC与圆O相切;
(3)设圆O交AB于点E,若AE=2,CD=2BD.求线段BE的长和弧DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=kx+b(k≠0)的图象与x轴、y轴交于A、B两点,A(﹣2,0),B(0,1).

(1)求直线l的函数表达式;

(2)若P是x轴上的一个动点,请直接写出当PAB是等腰三角形时P的坐标;

(3)在y轴上有点C(0,3),点D在直线l上,若ACD面积等于4,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=(
A.1
B.3﹣
C. ﹣1
D.4﹣2

查看答案和解析>>

同步练习册答案