精英家教网 > 初中数学 > 题目详情

直线数学公式和双曲线数学公式有________个交点.

2
分析:若两个函数有交点,则此交点满足这两个函数的解析式,即令两函数式相等,求其解即可,若无解则没有交点.
解答:令-=-
解得:x1=2,x2=-2,
代入y=-得:y1=-1,y2=1,
所以两函数有(2,-1),(-2,1)两个交点.
故答案为:2.
点评:本题考查的是函数的性质,求两个函数的交点,让这两个函数式相等,解方程即可,若有解则有交点,无解则交点,注意自变量的范围,舍去增根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•湖州二模)如图,在平面直角坐标系中,直线y=kx和双曲线y=
k′
x
在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.

(1)求直线y=kx和双曲线y=
k′
x
的函数关系式;
(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;
(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为(数学公式数学公式).如图,在平面直角坐标系xOy中,双曲线y=数学公式(x<0)和y=数学公式(x>0)的图象关于y轴对称,直线y=数学公式+数学公式与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线y=kx和双曲线数学公式在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.

(1)求直线y=kx和双曲线数学公式的函数关系式;
(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;
(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线y=ax2+bx(a≠0)与双曲线数学公式相交于点A、B.已知点B的坐标为(-2,-2),点A在第一象限内且纵坐标为4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)在抛物线y=ax2+bx的对称轴上有一点Q,设w=BQ2+AQ2,试求出使w的值最小的点Q的坐标;
(3)在图1的基础上,点D是x轴上一点,且OD=4,连接CD、AD(如图2),直线CD交y轴于点M,连接AM,动点P从点C出发,沿折线CAD方向以1个单位/秒的速度向终点D匀速运动,设△PMA的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围).
作业宝

查看答案和解析>>

科目:初中数学 来源:2012年广东省茂名市中考数学试卷(解析版) 题型:解答题

阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为().如图,在平面直角坐标系xOy中,双曲线y=(x<0)和y=(x>0)的图象关于y轴对称,直线y=+与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.

查看答案和解析>>

同步练习册答案