精英家教网 > 初中数学 > 题目详情
如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?
(1)证明:∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE△ADB,(3分)
AB
AD
=
AE
AB

∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,
∴AB=2
3
.(5分)

(2)直线FA与⊙O相切.(6分)
理由如下:
连接OA,
∵BD为⊙O的直径,
∴∠BAD=90°,
∴BD=
AB2+AD2
=
12+(2+4)2
=
48
=4
3

∴BF=BO=
1
2
BD=
1
2
×4
3
=2
3

∵AB=2
3

∴BF=BO=AB,
∴∠OAF=90°.
∴直线FA与⊙O相切.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.
(1)线段MN与BD是否垂直?请说明理由;
(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的半径分别是3,点P到圆心O的距离为4,则点P与⊙O的位置关系是(  )
A.点在圆内B.点在圆上C.点在圆外D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直径与等边△ABC的高相等的圆O分别与边AB、BC相切于点D、E,边AC过圆心O与圆O相交于点F、G.
(1)求证:DEAC;
(2)若△ABC的边长为a,求△ECG的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图,AB是⊙O的直径,直线EF切⊙O于点B,C和D是⊙O上的点,且∠CBE=40°,AD=CD,则∠BCD的度数是(  )
A.110°B.115°C.120°D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AFBC交DB的延长线于点F,AD交BC于点E,AE=2,ED=4.
(1)求证:AF是⊙O的切线;
(2)求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AD=30,点B,C是AD上的三等分点,分别以AB,BC,CD为直径作圆,圆心分别为E,F,G,AP切⊙G于点P,交⊙F于M,N,求弦MN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AC切⊙O于C点,CP为⊙O的直径,AB切⊙O于D与CP的延长线交于B点,若AC=PC.
求证:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

同步练习册答案