精英家教网 > 初中数学 > 题目详情

作业宝如图,⊙O1与⊙O内切于点A,△ABC内接于⊙O,AB、AC分别交⊙O1于点E和F,BD切⊙O1于点D,且FD是⊙O1的直径,延长FE交BD于点H.
(1)求证:EF∥BC;
(2)若∠DBC=60°,数学公式,求数学公式的值.

证明:(1)如图,过点A作两圆的公切线MN,
∵∠EFA=∠EAM,∠BCA=∠BAM,
∴∠EFA=∠BCA,
∴EF∥BC.

(2)由条件,不妨设DH=4k,
则HB=5k,DB=9k,
连接DE并延长交BC于点G,
∵DF为⊙O1的直径,
∴DE⊥HF,∠DEH=90°,
∵EF∥BC.
∴∠DGB=∠DEH=90°,
==
而∠DBG=60°,
∴BG=DB=k,DG=DB=k,
∴EG=DG=k,
在Rt△BGE中,BE2=BG2+EG2=39k2
∵BD是⊙O1的切线,
∴BD2=BE•BA,
===
=1-=
分析:(1)过点A作两圆的公切线MN,根据切割线定理可得出∠EFA=∠BCA,继而可证明结论EF∥BC;
(2)连接DE并延长交BC于点G,DH=4k,则HB=5k,DB=9k,根据∠DBC=60°利用解直角三角形的知识,可得出BG、DG的长度,然后表示出BE的长度,根据=1-,即可得出答案.
点评:本题属于圆的综合题,涉及了切割线定理、平行线的判定、勾股定理及切线的性质,考察的知识点较多,解答本题的关键是要求同学们熟练掌握所学的定理及性质,对于这样的综合性题目,除了要求我们仔细思考之外,更考察我们的灵活运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,⊙O1与⊙O2内切于点P,又⊙O1切⊙O2的直径BE于点C,连接PC并延长交⊙O2于点A,设⊙O1,⊙O2的半径分别为r、R,且R≥2r.求证:PC•AC是定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2内切于P点,过P点作直线交⊙O1于A点,交⊙O2于B点,C为⊙O1上一点,过B点作⊙O2的切线交直线AC于Q点.
(1)求证:AC•AQ=AP•AB;
(2)若将两圆内切改为外切,其它条件不变,(1)中结论是否仍然成立?
 
请你画出图形,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于A,交⊙O2于B,AC切⊙O2于C,交⊙精英家教网O1于D,且PB、PD的长恰好是关于x的方程x2-
m+16
x+4=0
的两个根.
(1)求证:∠1=∠2;
(2)求PC的长;
(3)若弧BP=弧BC,且S△PBC:S△APC=1:k,求代数式m(k2-k)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,⊙O1与⊙O2内切于点A,D为⊙O2上一点,过点D作⊙O2的切线交⊙O1于F、E,连接AF,AE,分别交⊙O2于B,C,连接BC,AD,BC与AD相交于点P,延长AD交⊙O1于Q.
(1)求证:BC∥EF;
(2)求证:FD•PC=AP•DQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O1与⊙O2内切于点A,其半径分别为r1与r2(r1>r2).若⊙O1的弦AB交⊙O2于点C(O1不在AB上),则AB:AC的值等于(  )

查看答案和解析>>

同步练习册答案