精英家教网 > 初中数学 > 题目详情
计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=(  )
A、
98
99
B、
49
97
C、
4
9
D、
49
99
分析:首先将原式变形为
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
),然后利用分数的加减运算可得
1
2
×(1-
1
99
),则可求得答案.
解答:解:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
)=
1
2
×(1-
1
99
)=
1
2
×
98
99
=
49
99

故选D.
点评:此题考查了分式的加减运算的应用,考查了学生的观察归纳能力.此题难度适中,解题的关键是将原式变形为
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的过程,然后填空.
解:因为
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11
)=
1
2
1
1
-
1
11
)=
5
11

以上方法为裂项求和法,请类比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
 

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+(  )=
6
13
中最未一项为
 

(3)已知-3x2ya+1+x3y-3x4-2是五次四项式,单项式-3x3by3-a与多项式的次数相同,求
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
+
1
8×9
-
2
b
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
1
30
=
1
5×6
=
1
5
-
1
6
,…
(1)猜想:请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
 

(2)验证:
(3)运用:请利用上述规律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

解:原方程可变形如下:
(4)拓展:计算
1
1×3
+
1
3×5
+
1
5×7
+
…+
1
2009×2011

查看答案和解析>>

科目:初中数学 来源: 题型:

已知1-
1
2
=
1
2
1
2
-
1
3
=
1
6
1
3
-
1
4
=
1
12
,…根据这些等式解答下列各题:
(1)求值:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6

(2)化简
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

(3)用类似方法计算
1
1×3
+
1
3×5
+
1
7×9
+…+
1
2007×2009

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)已知
1
1×3
=
1
2
×(1-
1
3
)

1
3×5
=
1
2
×(
1
3
-
1
5
)

1
5×7
=
1
2
×(
1
5
-
1
7
)


依据上述规律
计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
11×13
的结果为
6
13
6
13
(写成一个分数的形式)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的过程,然后填空.
解:因为
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
3
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11

=
1
2
1
1
-
1
11

=
5
11

以上方法为裂项求和法,请类比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
9
40
9
40

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+
1
11×13
1
11×13
=
6
13
中最未一项为
1
11×13
1
11×13

查看答案和解析>>

同步练习册答案