精英家教网 > 初中数学 > 题目详情

如图,在等腰Rt△ABC中,D是斜边BC的中点,E在边AB上,F在边AC上,且∠EDF=90°.
(1)当E在何处时,线段EF的长最短;
(2)根据(1)的推理过程及所学知识,请你写出该题的一个变式.(不要求证明)

解:(1)连接AD.
∵Rt△ABC中,AB=AC,D是斜边BC的中点,
∴AD⊥BC,∠DAE=∠C=45°,AD=CD=BD.
∵∠EDF=90°,
∴∠ADE=90°-∠ADF=∠CDF.
∴△CDF≌△ADE,(ASA)
∴DE=DF.
∴EF=
∴当DE最短时,EF最短.
当DE⊥AB时,DE最短.
∵AD=DB,
∴当DE⊥AB时,E为AB的中点.
∴当E是AB中点时,EF最短.

(2)若AB=1,求EF的最小值.
分析:(1)连接AD.根据等腰直角三角形性质,证明△CDF≌△ADE,得△DEF为等腰直角三角形,因此EF=DE.当DE最小时,EF最小.根据“垂线段最短”知E是AB中点时,EF最短.
(2)已知等腰Rt△ABC中一边的长度,可求EF的最小值.
点评:此题考查等腰直角三角形的性质,涉及最小值的分析和求解及发散思维与创新,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则
ADDC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.
(1)在此运动变化的过程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面积.

查看答案和解析>>

同步练习册答案