| A. | $\frac{\sqrt{2}}{2}$ cm | B. | $\sqrt{2}$cm | C. | 1 cm | D. | 2 cm |
分析 圆的半径为2,求出AB的长度,用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.
解答 解:AB=$\frac{BC}{\sqrt{2}}$=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$cm,
∴$\widehat{BC}$=$\frac{90π×2\sqrt{2}}{180}$=$\sqrt{2}$π
∴圆锥的底面圆的半径=$\sqrt{2}$π÷(2π)=$\frac{\sqrt{2}}{2}$cm.
故选A.
点评 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | DE=3 cm | B. | BE=1 cm | ||
| C. | 菱形的面积为15 cm2 | D. | BD=2$\sqrt{10}{cm}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 108 | B. | 150 | C. | 300 | D. | 192 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 甲队 | 176 | 175 | 175 | 174 | 176 | 175 |
| 乙队 | 170 | 180 | 178 | 175 | 180 | 176 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com