分析 根据tan∠EFC=$\frac{3}{4}$,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.
解答 解:设CE=3k,则CF=4k,由勾股定理得EF=DE=$\sqrt{C{E}^{2}+C{F}^{2}}$=5k,
∴DC=AB=8k,
∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=tan∠EFC=$\frac{3}{4}$,
∴BF=6k,AF=BC=AD=10k,
在Rt△AFE中,由勾股定理得AE=$\sqrt{A{F}^{2}+E{F}^{2}}$=$\sqrt{125{k}^{2}}$=5$\sqrt{5}$k=5$\sqrt{5}$,
解得:k=1,
∴BC=10×1=10;
故答案为:10.
点评 此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2π | B. | 3π | C. | 4π | D. | 5π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 90,80 | B. | 70,80 | C. | 80,80 | D. | 100,80 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com