精英家教网 > 初中数学 > 题目详情
(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
分析:(1)根据题意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA=
PD
PA
=
BC
AC
=
4
3
,则可求得QB与PD的值;
(2)易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形,即可求得此时DP与BD的长,由DP≠BD,可判定?PDBQ不能为菱形;然后设点Q的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD=BQ,列方程即可求得答案;
(3)设E是AC的中点,连接ME.当t=4时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF,由△PMN∽△PQC.利用相似三角形的对应边成比例,即可求得答案.
解答:解:(1)根据题意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA=
PD
PA
=
BC
AC
=
4
3

∴PD=
4
3
t.
故答案为:(1)8-2t,
4
3
t.

(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
AD
AB
=
AP
AC
,即
AD
10
=
t
6

∴AD=
5
3
t,
∴BD=AB-AD=10-
5
3
t,
∵BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,
即8-2t=
4t
3
,解得:t=
12
5

当t=
12
5
时,PD=
4
3
×
12
5
=
16
5
,BD=10-
5
3
×
12
5
=6,
∴DP≠BD,
∴?PDBQ不能为菱形.
设点Q的速度为每秒v个单位长度,
则BQ=8-vt,PD=
4
3
t,BD=10-
5
3
t,
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即
4
3
t=10-
5
3
t,解得:t=
10
3

当PD=BQ,t=
10
3
时,即
4
3
×
10
3
=8-
10
3
v
,解得:v=
16
15

当点Q的速度为每秒
16
15
个单位长度时,经过
10
3
秒,四边形PDBQ是菱形.

(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).
设直线M1M2的解析式为y=kx+b,
3k+b=0
k+b=4

解得
k=-2
b=6

∴直线M1M2的解析式为y=-2x+6.
∵点Q(0,2t),P(6-t,0)
∴在运动过程中,线段PQ中点M3的坐标(
6-t
2
,t).
把x=
6-t
2
代入y=-2x+6得y=-2×
6-t
2
+6=t,
∴点M3在直线M1M2上.
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.
∴M1M2=2
5

∴线段PQ中点M所经过的路径长为2
5
单位长度.
点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•福州)如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=
k
x
(x>0)的图象与△ABC有公共点,则k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州)如图是由4个大小相同的正方形组合而成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD=2
3
,求AE的长.

查看答案和解析>>

同步练习册答案